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In  this paper the first thirty-two axisymmetric modes for steady-periodic waves 
in viscous compressible liquids contained in rigid, impermeable, circular tubes 
are calculated. These results end long speculation over the effects of viscosity 
on guided acoustic waves. Sixteen of the modes belong to a family of rotation- 
dominated modes whose existence was previously unknown. The thirty-two 
modes were computed for a wide range of frequencies, viscosities and wave- 
lengths. 

The modes were found through the use of the method of eigenvalleys, which 
also led to the discovery of backward-propagating waves, an exact analytical 
expression for the zeroth rotational mode eigenvalue, definitive boundaries be- 
tween low and intermediate frequencies and between intermediate and high 
frequencies, and a new type of boundary layer, called a dilatational boundary 
layer. 

1. Introduction 
I n  recent years much attention has been focused on the propagation of small 

amplitude steady-periodic pressure waves through fluids confined in rigid tubes. 
Although a problem long of intrinsic interest to acousticians, most of the recent 
research has been spurred on by technological developments in fluid transmission 
lines and acoustic delay lines, and the desire for better mathematical models 
of biological flows, particularly arterial blood flow. The effects of viscosity cannot 
be ignored in these applications, in contrast to the customary acoustic approach. 
But in the few instances where viscosity has been considered, the analyses have 
been confined to simplified dynamic models (e.g. quasi-steady and/or plane 
pressure waves have been assumed), or else incomplete. This paper contains 
a complete study of the viscous effects for a compressible liquid. 

Limited solutions to simplified versions of the problem have been obtained 
by Kirchhoff (1868), Rayleigh (1896, $350), Iberall (1950), Shields, Lee & Wiley 
(1965), Tijdeman (1969) and Rubinow & Keller (1971). Many of the restrictive 
assumptions were removed by Elco & Hughes (1962) and Cohen & Tu (1962), 
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who obtained the proper dispersion relation, although they could not solve it 
except for certain limiting cases. The closest attempt at  solution was by Gerlach & 
Parker (1967), who showed the existence of some of the higher linear symmetric 
modes of propagation. Unfortunately, owing to inaccuracies in both their com- 
puter program and their method, Gerlach & Parker’s dispersion curves are in 
error by several orders of magnitude except for very low frequencies. 

Correct eigenvalues and dispersion curves are obtained in this paper for the 
first thirty-two modes. Backward-propagating waves are found to exist. In 
addition to the expected eigenvalues, a heretofore unknown second family or 
‘band’ of eigenvalues is also found, and the physical implications are discussed. 
The method of eigenvalleys is employed to extract these eigenvalues. 

2. Analysis 
Consider a compressible Newtonian liquid undergoing very small amplitude? 

steady-periodic laminar3 oscillation. For a density perturbation p much smaller 
than the constant steady-state density po, and for a fluid perturbation velocity v 
whose modulus is much smaller than the speed of sound co = (/?/po)*, where /? 
is the isothermal bulk modulus, the continuity, state and momentum equations 
reduce to the linear acoustic equations 

dP B a”- 1 
at dP Po’ at Po 
g + p o v . v  = 0, - = - - - -vp - v v  x v x v + (v’ + $v) V(V . v), 

(1 a, b’ c)  

where the first and second coefficients of kinematic viscosity v and v’ are assumed 
constant. The velocity field can be represented as 

v=vq5+vx+.  (2) 

Equations for the scalar potential q5 and vector potential cc( have been derived by 
Cohen & Tu (1962), Elco & Hughes (1962), Gerlach & Parker (1967) and Scarton 
(1970). Substituting (2) into the divergence of ( l c )  leads to the scalar potential 
wave equation 

in which + does not appear. Except for the added viscous term w;la(V2q5)/at, 
equation (3) is identical t o  the well-known inviscid compressible scalar potential 
wave equation. 

With no circumferential velocity and with axisymmetry, the vector potential 
will be assumed to possess only the angular component @o. Taking the curl of (1 c)  

t Acoustic streaming will not occur if the maximum fluid displacements are less than 
all modal wavelengths. 

$ H. Daneshyar of the University of Cambridge Engineering Laboratories (1971, 
private communication) has found experimentally that suoh a flow will not be turbulent if 
{ ( v / R V )  [ 1 2 5 0 + 3 4 3 R ( w / ~ ) * ] ) - ~  < 1 in the range 0 < R(w/v)a < 37, V being the amplitude 
of the radially averaged velocity, v the kinematic viscosity, R the tube radius and w the 
radian frequency. This work conkns  to within experimental accuracy the work by Sergeev 
(1966), which shows that laminar conditions exist if [ ( v /RV)  (1250+1-73Raw/v)]-1 < 1 
for R(w/v)* < 4, and [353(v/V) (w/v)l-]-l c 1 for 40 > R(o/v)* > 8. 
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FIGURE 1. Rigid impermeable tube containing a viscous compressible liquid. 

and combining this with (2) and the gauge condition 0.g = 0 leads to the dif- 
fusion equation for the non-trivial angular component of the vector potential 

in which q.5 does not appear. Hence, (3) and (4) are completely uncoupled. 
If the problem is restricted to propagation in a rigid non-porous right-circular 

cylindrical waveguide (figure 1),  the general radial boundary Conditions are 
(i) boundedness at  zero radius; (ii) non-porous rigid wall, v,(R) = 0; (iii) no slip 
at  the wall, w,(R) = 0. These viscous boundary conditions at the wall will couple 
the solutions of (3) and (4) through (2).  

If the fluid column is excited by an axisymmetric surface undergoing cyclic 
oscillation, the solution for the fundamental frequency, along with the solution 
for each of the higher overtones, can be represented by a steady-periodic 
separable solution, provided that no temporal instabilities are present and all 
transient effects have diminished so that the motion has become well established. 
For the given linear system of differential equations, the form of the separable 
solution for a typical field quantity f ( r ,  z, t )  reduces to 

( 5 )  
where w is the radianfrequency of the fundamental or one of the overtones of the 
oscillating source, k = k,. + iki is the complex propagation eonstant (alternatively 
called the eigenvalue, separation constant or wavenumber). 

Application of (5) to (3) yields the bounded (at r = 0) solution for the scalar 

f ( r ,  z, t )  = Re ( f ( r )  eiWt+k2: 1, 

potential #(r, z, t )  = Re (C,J,(mr) eiut+kz), 

where the radial solution Jo(mr) is the ordinary zeroth-order Bessel function of 
the first kind, the complex constant m is the principal square root of 

and C, is a complex constant of integration. 

ponent of the vector potential as 

where the radial solution J,(ar) is the ordinary first-order Bessel function of the 
first kind, the complex constant a is the principal square root of 

Application of ( 5 )  to (4) yields the bounded (at r = 0) solution for the 8 com- 

$o(r, z, t )  = Re (C,J,(ar) eiwt+ko), (8) 

a = [P- iw /v ] t ,  (9) 
and C, is a complex constant of integration. 
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Relations for the radial and axial velocity, perturbation pressure, perturbation 
= V x vt  are easily obtained from ( 6 )  and (8). These are 

(10) 

(11) 
p(r , z , t )  = Re(C,Jo(mr)ei~t+kz), C, = -C,ipow/(l+iw/wo),  (12a,b)  

(13) 

(14a, b ,  c) 

To ascertain the value of the complex propagation constant k, the two homo- 

density and vorticity 

wT(r, z ,  t )  = -Re [(C,mJ,(mr) + C,lcJ,(ar)) eiot+kz], 

w,(r, z, t )  = Re [(CllcJo(mr) + C,aJo(ar)) eiwt+ks],' 

p(r, x ,  t )  = co2p(r, 2, t ) ,  

!2@(r, z, t )  = Re (C, J1(ar) eiot+kz), 0, = !2, = 0, C, = - i ( w / v )  C,. 

geneous zero-speed boundary conditions a t  the wall are applied to give 

Since cos (wt + kiz)  e k T z  and sin (u t  + k i z )  ek@ are linearly independent functions 
for all t and z, their respective coefficients must separately vanish. As the con- 
stants C, = C,, + iCli and C, = C,, + iCZi we complex, this condition produces 
four linear, real, homogeneous algebraic equations in four unknowns: C,,, Cli, 
Cl,, and CZi. Writing these four real equations in their equivalent complex forms 
produces 

Mo(mR) aJo(aR) 
mJ,(mR) kJ,(aR) 

Since at  least one of C, and C, is arbitrary, the determinant of the coefficient 
matrix must be zero, yielding the dispersion relation or eigenvalue equation 

which provides the relationship between the complex eigenvalue k and radian 
frequency o. 

3. Exact numerical calculation of the eigenvalues using the method of 
eigenvalleys 

Given the parameters w ,  Y and I?', the dispersion relation can be solved for all 
the eigenvalues. However, this task is not straightforward, for the equation is 
transcendental in the eigenvalue k, which generally is a complex number. 
A technique called the method of eigenwalleys has been developed for solving 
the dispersion equation (Scarton 1970, 1973). This method uses the positive 
semi-definiteness property of the complex modulus of the auxiliary complex 
function or auxiliary equation 

for Ic = k,+ik ,  an arbitrary complex number. [E(k)  is the left-hand side of (17).] 

t Because of axisymmetry and n o  axial swirl volocity, the vorticity has only a 0 corn- 
ponent a*. 
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Application of the method of eigenvalleys involves the computer calculation 
(Scarton 1970, 1971, 1973) and automatic computer plotting of logarithmic 
contours (Robinson & Scarton 1972) of the surface IE(k,, ki)J, called an eigen- 
surface, over some predefined region of complex-lc space. Since the only way 
a minimum of JE(k)I can be obtained inside the region boundary is if E ( k )  takes 
on the value zero (cf. the maximum rnodulusprinciple, Nehari 1965, pp. 142-144), 
all concave-upward regions will contain eigenvalues at their base; these concave- 
upward regions are called eigenvalleys. (In like manner, all concave-downward 
interior regions will contain singularities of E(lc).) The exact location of the base 
of each eigenvalley is then calculated numerically using minimization techniques. 
Details of the development of all computer programs usedin the calculation, along 
with actual program listings, are contained in the dissertation by Scarton (1970). 

All quantities are made dimensionless, as follows: frequency P = wR/co; first 
coefficient of viscosity D = VIRGO; second coefficient of viscosity D' = v'/Rco; 
propagation constant y = FcR; 31 = mR; A = aR; E ( y )  = R2E(k).  Equations (7),  
(9) and (18) then become 

A summary of the range of parameters used in the study of the zeros of (19) 
is given in table 1. The values of the dimensionless first coefficient of viscosity D 
selected are lo-', l0"and which are defined as cases R, C and A ,  respectively. 
The values of the dimensionless frequency B' selected vary continuously from well 
into the low-frequency range to well into the ultra-high-frequency range. The 
second coefficient of viscosity v' (dimensionless form D') is assumed to be zero 
in this paper. 8 

Using this technique, the co-ordinates of thirty-two eigenvalleys were identi- 
fied and calculated to five-place accuracy, and are extensively tabulated by 
Scarton (1970). 

t It is immediate that A = 0 is a zero of (19a); this produces the result (21) given 
later [cf. $4.21. 

1 The assumption of zero second coefficient of viscosity is justified, except at ultra- 
high frequency, by examining the factor [l+iF(D'+$D)] of (19b), which is the only 
place where D' appears. Experimental data (Rosenhead 1954) indicate that 

i . 7 V  < v' d 4.7v. 
Cdculation of this factor for the largest values of P and D employed herein and v' in the 
preceding range shows that the imaginary part of the factor is many orders of magnitude 
smaller than unity, except a t  ultra-high frequency, and thus negligible. Hence, the effects 
of boundary dissipation due to the zero speed at  the wall very much dominate relaxation 
effects at  frequencies small compared with the relaxation frequency ; at ultra-high fre- 
quencies comparable with the relaxation frequency, the viscous and dilatational boundary 
layers at  the wall are extremely thin owing to skin depth effeots [to be discussed later, 
see $51, and the effect of setting D to zero remains to be clarified. The thinness of the 
boundary layers in this latter caw produces a situation that is very similar to the ultra- 
high-frequency acoustic propagation in a half-space, where relaxation effects are shown to 
be relevant (Lighthill 1956, $$3, 4). 
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Case D .F Liquid R (in.) f (Hz) 
A 1 0 - 2  0.01-50.0 Glycerine 0.0021 53 x 10t3-265 x lo-' 
C 0.0002-95 Water 0.00025 7.56 x 10+3-3.6 x 

Glycerine 0.2 1 10.6-5.05 x 
B 5 x 10-G-O.O1 Water 0.25 0'189-379 

TABLE 1. Dimensionless first coefficient of viscosity D and dimensionless frequency range F 
with corresponding fluid equivalent, tube radius R, and cyclic frequency range f at room 
temperature (70 O F ) .  [The dimensionless second coefficient of viscosity D' is zero for all 
cases studied. The above viscosity data are taken from Olson (1962, pp. 19-20).] 
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4. Discussion of results of the complex eigenvalue calculation 
4.1. Examination of a representative eigensurface 

Figure 2 shows a typical eigensurfacelogarithmic contour plot (P = 1.0, D = 0.01, 
D' = O.O) . t  The changes in the locations of the eigenvalues y with changes in 
frequency F ,  i.e. the dispersive behaviour of the eigenvalues, are seen by ex- 
amining the eigenvalue trajectories for D = 0.01 and D' = 0 in figure 3. The 
eigensurface plots reveal the existence of two bands of eigenvalues, called the 
A band and the B band. The A-band eigenvalues lie in quadrants I and IV near 
the real and imaginary axes; the B-band eigenvalues are contained entirely in 
quadrant I in the region between the real axis and a line through the origin at  
45" to the real axis. (Only the first sixteen eigenvalues from each band are shown 
in the figures.) Both band A and band B have equivalent eigenvalues located 
in quadrants I1 and 111. Because of symmetry about the origin (E(y)  is an even 
function), the only difference between these eigenvalues and their quadrant I 

t Notice that ( -  yT, -yi) have been chosen as co-ordinates, and that references to 
quadrants I-IV refer t o  this co-ordinate system (e.g. the point - yp  = 2, - yi = 3 lies 
in quadrant I). 
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FIGURE 3. Eigenvalue trajectories. Case A :  D = D' = 0. 
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and quadrant IV counterparts is that their signs are reversed. Located between 
the eigenvalues are isolated interior regions of high elevation. Of course, E(k)  
is not analytic in these regions and its poles occur at  the zeros of J,(M) and J,(A), 
which were artificially introduced in order to normalize the dispersion relation 
and, thus, avoid unreasonably large overall eigensurface heights away from the 
eigenvalleys . 

The A band possesses a definite starting eigenvalueA0, which, for dimensionless 
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frequencies lower than one, is located very close to the origin and, for 
increasing dimensionless frequencies above one, proceeds u p  and to the right, 
with its dimensionless imaginary part approximately equal to the dimensionless 
frequency; the B band also possesses a definite starting eigenvalue BO, which, 
for F less than D, is within one unit of the origin and located on a line a t  45" 
to the axes and, for increasing dimensionless frequencies above the dimension- 
less viscosity, moves farther out along the 45' line into the first quadrant. The 
higher A-band eigenvalues beginning with A1 are located on a concave-upward 
curve which starts at  a position near AO, proceeds down and to the right, and 
eventually becomes uniformly spaced and parallel to the real axis lying some 
fixed distance below it; the higher B-band eigenvalues beginning with B1 are 
located on a curve passing through BO which is concave downward a t  low 
frequencies and concave upward at high frequencies, and which proceeds from 
BO to the right, eventually becoming uniformly spaced and parallel to the real 
axis, lying a fixed distance above it.? A t  dimensionless frequencies smaller than 
the dimensionless viscosity, the successive higher numbered eigenvalue pairs, 
A1 and BI ,  A2 and B2, and so forth, tend to be complex conjugates of each 
other. As the frequency is increased, the higher numbered A-band eigenvalues 
individually swing up and to the left, and then gradually to the right, A0 
moving adjacent to successively higher numbered eigenvalues; the higher B- 
band eigenvalues individually move up and to the right and directly follow the 
trend set by BO. 

H .  A. Scarton and W .  T. Roubau 

Sample studies for other dimensionless viscosities in the wider range 

10-8 < D Q 10+1 

are given by Scarton (1970). These additional studies show that small viscosities 
keep the A-band eigenvalues very near to both the real and the imaginary axes, 
while higher viscosities allow the A-band eigenvalues t o  move farther away from 
the imaginary axis and to cross over the real axis more quickly; for the B band, 
small viscosities allow the eigenvalues to move away from the origin in quadrant I 
more rapidly than at the larger viscosities. 

4.2. The examination of dispersion curves 

Rewriting ( 5 )  in terms of dimensionless time T = cot/R, axial co-ordinate Z = x/R, 
radial co-ordinate 9 = r / R  and wavelength A = h/2n-R = - l /y i  gives 

where f * refers to the dimensionless eigenfunction or mode f ,  the phase off * is 
given by the real quantity FT + yiZ, yi is known as the dimensionless phase 
constant and yr is called the attenuation constant or spatial attenuation factor. 
The dimensionless p h s e  velocity, the velocity at which a point of' constant modal 
phase FT + yiZ advances, is cp* = cp/co = - Flyi. For an inviscid compressible 
liquid, the dimensionless group velocity cg = cG/cO = -dF/dyi is the velocity at 
which the modal wave energy advances. For a viscous, and therefore dissipative, 
compressible liquid, the concept of groupvelocity, as defined by the above relation, 

f *(L@,Z, T )  = Re {f*(w) exp [i(FT - Z/R)  + y,Z]}, (20) 

An asymptotic equation for the large lyr*l eigenvalues is given at the end of $4.2. 
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becomes ambiguous and can define velocity of modal energy only when lyil 9 lyrl 
(Lighthill 1965, Q 3). When this inequality does not hold, the concept of group 
velocity must be replaced by the more general concept of a radiation condition 
obtained by evaluating the time-averaged flux of energy through the tube cross- 
section for a given mode. If the phase velocity and energy flux have the same sign, 
the mode is said to be a forward (propagating) wave; if the two have opposite 
signs, the affected mode is referred to as a backward wave. 
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The dispersion curves plotted in figures 4 (a), ( b )  and (c) show the dependence 
of the attenuation constant yr on the dimensionless frequency P in quadrants I 
and IV. Since there is no internal energy source present (such as in a streaming 
liquid, where the zeroth-order solution would exchange energy with the &st-order 
solution), the typical source of modal excitation (such as an oscillating piston) 
is discretely located a t  some specified axial position, and the viscous fluid is dis- 
sipative, these quadrant I and I V  eigenvalues with negative attenuation con- 

I I I I I 

(6) 

1 
1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

' High-frequency 
range i Intermediate-frequency range I range 

4 d *  * LL 4 -  
I I I111111 I I 1 1 1 1 1 1 1  I 11111111 I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I llln 

I 



Axisymmetric waves in compressible Newtonian liquids 
I I I I 

+- 
0 

3 
b 

515 A15 
& -- 4 

605 

- I  

FIGURE 4. Spatial attenuation factor dispersion curves with all yl < 0. (a)  Case A :  
D = D’ = 0. (c) Case B :  D = lo-’, D‘ = 0. ( y r ~ o  for 
case B is essentially zero.) 

D’ = 0. ( b )  Case C: D = 

stants must be associated with the positive radiation of energy. By the same 
argument the quadrant I1 and I11 eigenvalues with positive attenuation con- 
stants are associated with a negative radiation condition. Also, examination of 
the eigenvalues close to the imaginary axis (where lyil 9 1 ~ ~ 1 ,  so that the group 
velocity c$ z - dF/dy,  is a valid concept) tends to confirm the argument. 
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Comparison of the attenuation constant dispersion plots for the three cases 
reveals that a distinct boundary between low-frequency and intermediate- 
frequency behaviour can be defined as that frequency, denoted by FLZ, where 
the A1 and BO attenuation constants are equal. The low-frequency region is 
found below FLI and is where the A0 and BO modes attenuate at  rates much 
smaller than those for all other modes and higher numbered pairs A N  and 
BN ( N  z I )  are very nearly complex conjugates of each other. The intermediate- 
and high-frequency ranges occur above FLI and are where the A0 and A1 modes 
(and for frequency high enough, successively higher numbered A-band modes) 
attenuate at spatial rates much smaller than those for all other modes. Hence, 
this definitive low-intermediate dimensionless frequency boundary FLZ provides 
a means of determining the relative importance of the A and B bands. For 
dimensionless frequencies below FLZ, the A band and B band have the same 
importance, since their respective modes decay spatially at approximately the 
same rate; for dimensionless frequencies above FLI, the A band becomes much 
more important than the B band, since each lower numbered B-band mode 
decays spatially many times more rapidly than its counterpart on the A band, 
For cases A,  C and B, the respective approximate dimensionless low-intermediate 
frequency boundaries FL- are 0.35, 3.55 x 

Lighthill (1970, private communication) has observed that the low-inter- 
mediate boundary always seems to occur when F/D M O(10). Based on this 
observation and the extensive parameter coverage by Scarton (1970), it has been 
found that FLI can be written empirically as 11.14nD. (The slight variation in the 
case B data was ignored in the calculation, since it is based on an extrapolation.) 

Dispersion curves showing the dimensionless phase velocity c,* as a function of 
the dimensionless frequency P are plotted in figures 5 (a ) ,  (b )  and (c ) . t  Notice that 
the A0 aiid all of the B-band phase velocities are positive for all frequencies, but 
that, depending on frequency, the A1 and higher numbered A-band phase 
velocities may be positive or negative. Since the radiation condition is positive for 
all quadrant I and I V  eigenvalues, the A0 mode and all B-band modes are forward 
waves, while the A1 and higher numbered A-band mode? can either be backward, 
for low enough frequency, or forward propagating, for the higher frequencies. 

Since the dimensionless wavelength A is the negative reciprocal of the dimen- 
sionless phase constant y$, the phase constant plots (Scarton 1970) show that the 
dimensionless wavelength for the modes varies continuously over a very large 
range, encompassing magnitudes much larger than one for low frequencies and 
magnitudes much smaller than one for high frequencies. For case C, this wave- 
length variation for the mode A0 extends from the very long A of 3000 for 
F = 0.0002 to the very short A of 0.0105 for F = 95.0. 

Comparison of the phase-velocity dispersion plots reveals that a distinct 
boundary between intermediate- and high-frequency modal behaviour can be 
defined as that frequency FIH for which the A1 phase constant equals zero. 
Above FIH, the phase of mode A1 propagates in the positive direction, while 
below F I E 1  it propagates in the negative direction. Also, below FIZZ mode A0 

The corresponding phase constant yi versus dimensionless frequency P dispersion 
plots are given by Scarton (1970). 

and 3-51 x 
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FIGURE 5(a).  For legend see p. 608. 

has a very small attenuation constant compared with those of the other A-band 
modes (which, in contrast to mode AO, are backward propagating below PIH). 
For frequencies somewhat higher than PIH, mode A1 and higher modes have 
attenuation constants that are slightly less than the value for mode AO. 

In  cases A and 0, FI, is very nearly n at the approximate value 3.1 €or 
so that the width of the intermediate frequency range FIn/FLI 2 D 2 

is given by O-OSS/B. 



608 H .  A .  Scarton and W .  T. Rouleau 
103 I t I I 

I 
I 

A5 ( > O )  k 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

I I 
I I 

1 
I 

I 
' High-frequency rang Low-frequency range I Intermediate-frequency range 

LL- q- r) 

10-4 10-3 10-1 1 00 

Dimensionless frequency, F 

FIGURE 5(b) .  For legend see facing page. 

Examination of the dispersion curves (figures 4, 5 )  shows that the real and 
imaginary parts of the eigenvalue yso are equal and proportional to (FIJI)+. From 
the figures it is found that 

(21) 
which is an exact zero of the auxiliary equation (19) for arbitrary P and D,  and 
for all D as well. The mode BO dimensionless phase velocity is cgBo = & (2DF)t. 
(The concept of group velocity does not apply, since yr = ye) 

yB0 = T (P/BD)4 (1 + i), 
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Equation (21) shows that yBo = 0 for zero frequency. An analytical expression 
for yAo has been given by Brown (1962) for small viscosity, and this shows that 
yAo is zero for zero frequency. These limits are also evident upon extrapolating 
the A0 and BO eigenvalue trajectories in figure 3. Fitz-Gerald (1969,1972) shows 
the same eigenvalue behaviour, but in a different way; by ignoring compres- 
sibility and inertial effects entirely in deriving his eigenvalue equation he has, 

39 F L M  58 
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in effect, taken the zero-frequency limit apriori and has found the trivial eigen- 
value y = 0. Thus, a condition of modal degeneracy exists a t  zero frequency, 
with yAo(P = 0 )  = yBo(P = 0) = 0. Comparison with the non-viscous com- 
pressible eigenvalue is instructive. In  $ 5  it  will be shown that the A-band 
eigenvalues are the viscous equivalents of the non-viscous eigenvalues. The lowest 
non-viscous eigenvalue is yo, and yo = & F ,  which vanishes for zero frequency, 
exhibiting the same degeneracy as the corresponding viscous mode yA0. 

The limiting solution for the low-frequency complex conjugate behaviour 
exhibited by the higher numbered A- and B-band eigenvalues is contained in 
the work by Fitz-Gerald through the solution of the zero-frequency dispersion 
equation y[J i (y )  + J;(y)]  = 2Jo(y) J,(y). (This expression is easily obtained from 
(17) by taking the zero-frequency limit of (17) expanded in Taylor series about 
zero frequency.) Pitz-Gerald gives the asymptotic form of higher numbered 
eigenvalues as yn = $&?n + 1) 7rzi In [(an+ 2) 7r] (for large n).? Fitz-Gerald 
has tabulated the values of the f i s t  ten eigenvalues; they agree very well with 
the low-frequency eigenvalues tabulated by Scarton (1970) (as well as with the 
higher frequency eigenvalues, for n large enough). 

Onoe, McNiven & Mindlin (1962) have obtained zero-frequency results that 
are qualitatively similar to this limit in their solution of axially symmetric waves 
in an infinitely long, isotropic, circular, non-dissipative rod, as given by Poch- 
hammer's equation: they describe a spectrum, covering a large range of real 
frequencies, which includes real, imaginary and complex propagation constants. 
Contrary t o  the viscous-fluid eigenvalues, regardless of frequency the Onoe et aH. 
eigenvalues always appear in complex conjugate pairs owing to their elastic and 
therefore conservative nature. 

5. Radial mode structure 
5.1. Calculation of the field quantities 

Expressions for the dimensionless radial and axial velocity are obtained by 
writing the constant C, in terms of C,. From (15a, b)  these are in dimensionless 
form 

where C:, = Cln/Rco, C& = C21,/Rco and n refers to  the nth mode. The dimen- 
sionless modal solutions for radial and axial velocity from (lo), (11) and (22) 
become 

I] exp (iP5"+ynZ)] (23) 

respectively, where VFn = v,.,/c, and V,*, = vSn/co. Modal solutions for the dimen- 
sionless perturbation pressure, scalar potential, perturbation density, 8 com- 

t The four alternative choices of sign have been added to Fitz-Gerald's original ex- 
pression, which showed only positive signs. 
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ponent of the vector potential and 0 component of the vector vorticity from (12), 
(6), (13), (8) and (14) become 

The modal equations (23) and (24) have the form 

fX(a,Z, T ; F , B )  = Re{C:gX(a;F,B)exp(iFT+y,Z)} 
and are most concisely represented by plotting the real and imaginary parts of 
the radial eigenfunction gz,  normalized respectively by the maximum magnitude 
of the real or imaginary parts on the interval 0 6 B? < 1. 

Two typical sets of plots (figures 6 , 7 )  display the radial component of velocity 
V&, the axial component of velocity Vzn, the perturbation pressure p;  and the 
0 component sZ& of the vorticity for modes AO, A l ,  A15, BO, B1 and 2315. 
Equation (24) shows that radial variations of $2 and p; are the same as those of 
p z ;  likewise, the radial variation @Zn is the same as that of Q&. 

The &st set of plots for P = 0.01 andD = 0.01 (figure 6) exhibits characteristic 
low-frequency behaviour (P < PLI); the second set for P = 0-1 and B = 0.0001 
(figure 7) exhibits characteristic intermediate-high-frequency behaviour 
(P > PL1). A much expanded version of these plots is given by Scarton (1970). 
Some of the conclusions drawn here will be based on that expanded set of mode 
plots. The maximum magnitudes of the real and imaginary parts appear in 
table 2. (All plots are based on quadrant I1 and I11 eigenvalues; cf. 3 4.1.) 

5.2. Verijkation of the modal no-slip condition and establishment 
of the essential physical mechanism which governs each mode 

The rigid impermeable wall boundary condition v,(R) = 0 is seen to be satisfied 
for all modes in all cases. The no-slip condition v,(R) = 0 is also satisfied for all 
modes, except apparently for the imaginary part of the axial velocity of mode 
A0 at high frequencies. However, since the no-slip and rigid impermeable wall 
boundary conditions are satisfied at lower frequencies for mode A0 (proving that 
A0 is in fact a mode), and since the A0 eigenvalley trajectory has been con- 
tinuously followed for increasing frequency, the conclusion is that the apparent 
slip velocity is the result of a slight inaccuracy in eigenvalue AO at these higher 
frequencies. 

Mode plots for band A and band B show that the modal character for each 
band is fundamentally different. When the pressure and vorticity are examined 
for the intermediate-high-frequency case (P = 0.1 and D = 0-0001, figure 7), 
this difference is clearly demonstrated. In  this case, the vorticity for the A band 

38-2 
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FIGURE 6. Radial mode structure for P = (case A ) .  0, real part; 
A ,  imaginary part. The quadrant I1 and I11 eigenvalues are used. ( a )  Mode AO. ( 6 )  Mode 
A l .  (c) Mode ,315. (d )  Mode BO. ( e )  Mode B1. (f) Mode B15. 

and D = 
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FIGURE 7. Radial mode structure for P = lo-' and D = 1 0 4  (case C). 0, real part; 
A ,  imaginary part. The quadrant I1 and I11 eigenvalues are used. (a) Mode AO. (b) Mode R 1. 
( 0 )  Mode ,415. (d) Mode BO. (e) Mode B1. (f)  Mode B15. 
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(and the pressure for the B band) away from the tube wall is very much smaller 
than the vorticity for the A band (and pressure for the B band) adjacent to the 
tube wall; while, on the other hand, the pressure for the A band (and the vorticity 
for the B band) is generally not zero for any arbitrary radius. Thus, band A may 
be described as pressure-dominated (or dilatation-dominated), and band B as 
vorticity-dominated (or rotation-dominated) . 

5.3. Study of the A-band modal structure 

The pressure dominance in the A band can be further illustrated by comparing 
its modes with the solution of the inviscid, compressible, rigid, impermeable 
tube dispersion relation J,(M,) = 0, where yn is obtained from (19) upon setting 
D = D' = 0 (cf. Redwood 1960). For the inviscid problem, yn is pure imaginary 
when F > M, and represents a state of non-attenuated propagation of longitu- 
dinal pressure waves; for P < M,, yn is pure real and represents a state of pure 
diffusion (or evanescence); for the transition condition F = M,, yn is zero and 
represents modal cut-ojf. Examination of high-frequency eigensurfaces (Scarton 
1970) reveals similar behaviour for the A band, with the eigenvalues shown being 
nearly pure real or pure imaginary. Evidently, the A-band eigenvalues are the 
viscous equivalents of the zeros for the inviscid compressible solution, so that 
the A-band modes are excited primarily by an axisymmetric normal oscillation 
of the axisymmetric surface mentioned in 5 2. If the oscillating disturbing surface 
were a flat axially oscillating piston, longitudinal dilatational pressure waves 
propagating in the Z direction would be generated. 

Further, from figure 5 ( b ) ,  for example, the dimensionless A0 phase velocity 
is nearly equal to the inviscid zeroth-mode phase velocity (unity) for frequencies 
P > FLI. For viscous modes AN (N > 1) the phase velocity approaches infinity 
(or yi + 0) at values of P nearly equal to the cut-off frequencies of the corre- 
sponding inviscid modes (i.e. F = 3-83, 7.01, 10.2, etc.). There is no cut-off for 
these viscous modes, but rather a transition from backward to forward waves, 
where, for the higher A-band modes, the dramatic drop in Iy,l (cf. Q 4.2) occurs 
at the transition frequency for that mode. 

Additional comparisons can be made on the basis of complex radial pressure 
variations. The inviscid pressure plots are given by Redwood (1960, p. 76) and 
for the zeroth mode show that the pressure is constant and pure real (i.e. a plane 
wave) for all frequencies. Comparison with the viscous mode A0 shows that for 
low viscosities and frequencies (figures 6a, 7a)  the real part of the pressure is 
constant and the imaginary part has a comparatively small magnitude, so that 
there is a close correspondence with the inviscid plane wave. However, for higher 
frequencies and viscosities, both real and imaginary parts of the pressure varg 
with radius and thus the A0 mode no longer corresponds to a plane wave. More 
comparisons are presented by Scarton (1970). 

A further study of the effect of viscosity on the A-band modes shows that it 
creates behaviour of a boundary-layer type very near the wall, with the vorticity 
attaining a maximum at the wall and diffusing into the fluid mainstream. Burns 
(1966, p. 89; 1967) has observed this phenomenon for mode A0 for the case of 
a gas-filled rigid tube undergoing steady-periodic oscillation. A recasting of 
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Burns’s results for mode ,407 shows that the solution for mode A0 can be con- 
sidered as the sum of two waves. The dominant contribution is a well-behaved 
wave that does not fluctuate appreciably across the cross-section of the tube. At 
low frequency and low viscosity, the pressure that gives rise to this wave does 
not differ greatly from the pressure that is characteristic of propagation in 
unbounded media. In  addition, there is a rotational vorticity wave, generated by 
viscous shear, that enables the solution to satisfy the boundary condition on the 
tangential particle velocity at the tube wall. This latter wave appears in the 
form of a highly damped, oscillatory diffusion wave that is dragged along by the 
dominant pressure wave. This diffusion wave attains its maximum at the wall, 
where the interaction of the wall and the oscillating fluid mainstream have 
created a viscous (or rotational) boundary layer. When F > FLI, the diffusion 
wave is exponentially small in the mainstream. This shear-induced transverse 
vorticity diffusion wave gives rise to a skin-depth or boundary-layer effect in 
which steep transverse gradients of viscous shear exist. Burns computes the 
thickness of this boundary layer, which in dimensionless form is given by 

where S,, is the shear wavenumber and S, is the Stokes number (steady- 
periodic Reynolds number). At the critical dimensionless frequency PLI, AAo is 
0.24. Examination of the vorticity for the higher numbered A-band modes shows 
a similar skin-depth effect, with the vorticity for the higher number A-band 
modes penetrating radially farther into the fluid mainstream than the vorticity 
for the lower numbered A-band modes. This larger skin depth for the higher 
A-band modes is to be expected, given the earlier observation that these modes 
are approaching the non-inertial zero-frequency Fitz-Gerald solutions (cf. 3 4.2). 
The axial spatial attenuation of the backward-propagating modes becomes suc- 
cessively more severe. 

figure 6a) ,  the real and imaginary parts of the axial velocity profiles for mode 
A0 are essentially parabolic, while the radial velocity resembles a half sine wave 
in its real and imaginary parts, with the respective dimensionless maxima 
being at least two orders of magnitude smaller than the dimensionless axial 
velocity, whose real and imaginary parts are of the same order. Turning next 
to the opposite extreme of large intermediate frequency and low viscosity (e.g. 
for F = 10-l and D = 10-4, figure 7a), markedly different behaviour for the 
mode A0 velocity is observed, the axial velocity being constant and pure 
imaginary except in a, very thin boundary layer and the radial velocity varying 
linearlywithradius except in the boundary layer. Again, the maximum magnitude 
of the dimensionless axial velocity is many orders larger than the magnitude of 
the maximum dimensionless radial velocity. These two extremes in behaviour 
for the mode A0 velocity are well-known (Schlichting 1960, pp. 229-231), the 
former representing time-varying quasi-steady Poiseuille flow and the latter 
Richardson’s ‘annular effect’, the distinction being caused by the depth of 

t The ratio of specific heats y = oJcV for a liquid is nearly one; this decouples the 
nonlinear thermal effect which would otherwise appear. 

For low frequency and high viscosity (e.g. for F = and D = 
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penetration of the wall shear. (The existence of the thin boundary layer and the 
resultant extremely steep gradients a t  the higher frequencies shows that the 
mode A0 axial velocity profiles should indeed be very sensitive to slight numerical 
errors in the complex A0 eigenvalue.) 

5.4. Study of the B-band modal structure 
The vorticity (or rotation) dominance of the B band can be further illustrated 
by noting that yRO is directly related to the viscous boundary-layer thickness 
AAO and by observing that the exact analytical solution (21) for yBo is identical 
to that obtained for Stokes’s second problem, i.e. the flow near an oscillating 
flat plate (Schlichting 1960, p. 75). Examination of the diffusion equation (4) 
for q?$ = Re {-+.,*(a) exp [Z(iP/D)h + iFT]} using yBo gives a reduced ordinary 
differential equation in $;(a) where the Z dependence, and thus the diffusion 
effect, cancels. Apparently, mode BO is excited primarily by an axisymmetric 
tangential oscillation of the axisymmetric surface mentioned in $2.  This tan- 
gential oscillation generates in the fluid rotational shear (or vorticity) waves 
propagating in the Z direction. Additional proof of the rotational dominance of 
mode BO comes from observing that its attenuation constant is infinite and its 
phase velocity zero for zero viscosity. As the vorticity is also zero for zero viscosity, 
it can be inferred that the B band does not exist for an inviscid fluid. For non- 
zero viscosity, yBo is bounded and the vorticity is non-zero, so that shear gradients 
exist. These same conclusions apply to all B-band modes, as their trajectories 
all follow the trend set by BO. 

The radial variation of vorticity for mode BO is found from (24) and (22 )  using 
(21) for yBo, the initial result being indeterminate; use of L’Hospital’s rule 
shows that QzB0 varies linearly with radius 9, and is given by 

G B O  = Re { C T B o a ( y B o ~ , o J , ( ~ , o ) )  exp ( iFT+ YBOZ))’ (25 )  

For the low-frequency case (P = 0.01) shown in figure 6, the vorticity for mode 
A0 also has a linear variation, apparently the consequence of the mode degeneracy 
discussed in 5 4.1, where it was shown that yAo and yBO approach each other as 
the frequency tends to zero. The vorticity of the B1 mode and higher B-band 
modes is always complex, its real and imaginary parts being within one order 
of magnitude of each other. 

A n  examination of the B-band modal pressure shows diffusional behaviour 
which is identical to that exhibited by the A-band vorticity. I n  fact, close com- 
parison of the A-band vorticity curves and the B-band pressure curves shows 
that the former curves can be obtained from the latter curves, to within two- 
place accuracy, by merely switching real and imaginary parts cf the A-band 
vorticity curves and then changing the signs of the new real and imaginary parts. 

Since the roles of pressure and vorticity have apparently been reversed for 
band A and band B, the conclusions for band A serve to elucidate the physical 
processes occurring in the BO mode. The dominant contribution to BO is a 
vorticity wave having a linear radial variation. In  addition, there is a pressure 
wave generated as a consequence of the rigid wall. This latter wave appears 
in the form of a highly damped, oscillatory diffusion wave that is dragged along 
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by the dominant vorticity wave. This diffusion wave attains its maximum at the 
wall, where the interaction of the wall and the oscillating fluid mainstream have 
created a quasi-boundary layer near the wall. When 3’ > FLI the diffusion wave 
is exponentially small in the fluid mainstream. The expression ‘ quasi-boundary 
layer ’ is used because the exact mechanism which creates this B-band boundary 
layer does not appear to be shear, since the vorticity is generally non-zero across 
the entire cross-section of the tube. It seems likely that the mechanism which 
creates this quasi-boundary layer is a secondary dilatational interaction between 
the fluid mainstream and the rigid wall, since the diffusional B-band quantity 
is pressure. The reason for the existence of this diffusive pressure wave close 
to the wall is most easily visualized by considering the exciting axisymmetric 
tangentially oscillating surface to be flat so that the tangential oscillations are 
radial, i.e. a radially expanding and contracting flat piston. Under this condition 
the oscillation would produce transverse shear waves whose displacements 
would be perpendicular to the tube wall. In  the region of fluid nearest the tube 
wall the radially oscillating perpendicular fluid displacements would tend to 
impact the wall, compressing the fluid adjacent to  the wall and thus creating 
the above-mentioned radial diffusional pressure or dilatation waves. Therefore, 
a plausible name for this B-band quasi-boundary layer is a dilatational boundary 
layer. As with the A-band vorticity, this pressure di€fusion wave gives rise to 
a skin-depth effect. The penetration depth A,, can be defined by simply 
Ado = ABo. Thus, the spatial attenuation and skin depth for mode BO are equal 
at  (2D/P)*, so, as has been pointed out by Lighthill ( 197 1, private communication), 
for P > 2 0  = PL1/17*5 the dilatational boundary layer reduces to a corner effect. 
The higher numbered B-band pressure modes show a similar skin-depth effect, 
with the pressure for the higher numbered B-band modes penetrating farther 
into the fluid mainstream than the pressure for the lowered numbered B-band 
modes. As with the A-band modes, this larger skin depth for the B-band modes 
is to be expected, given the nearness of the non-inertial zero-frequency Fitz- 
Gerald solutions (cf. 3 2). The axial spatial attenuation becomes successively 
more severe for the higher numbered B-band modes. It should be pointed out 
that under normal circumstances the tangential oscillation of the disturbing 
surface would be difficult to produce, so that in the usual case of an axially 
oscillating flat piston, the principal function of B-band modes would be to help 
to satisfy the no-slip condition on the piston face, and thus, to help to proportion 
the input piston radiation of energy properly. 

An examination of the mode BO radial and axial velocities in figures 6 and 7 
shows that the general appearance is similar to that of the A0 velocity profiles. At 
low frequency and high viscosity (e.g. for F = and D = figure 6 a ) ,  an 
equivalent time-varying ‘ Poiseuille ’ flow is observed, while at  higher frequency 
and lower viscosity (e.g. for P = lo-’ and D = figure 7a) ,  mode BO is found 
to describe behaviour equivalent to Richardson’s ‘annular effect ’. The low- 
frequency case suggests that the presence of fluid compressibility is felt through- 
out the entire fluid cross-section, while the intermediate-frequency w e  suggests 
that the presence of fluid compressibility is felt only in the very thin dilatational 
boundary layer, with the fluid mainstream acting as if it  were incompressible. 
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There is a major difference between the A-band and B-band modal velocities: 
whereas the maximum magnitudes of the complex dimensionless A -band radial 
and axial velocity components are a t  least two orders apart, the maximum 
magnitudes of the dimensionless B-band velocity components are of the same 
order. This difference in behaviour is to be expected, given the above-mentioned 
tangential excitation of these latter modes. 

6. Comments on the general n homogeneous boundary conditions 
problem 

Study of the preceding linear solution with two homogeneous radial boundary 
conditions, which yield two bands of complex eigenvalues, suggests an extra- 
polation of the findings to the general problem where n homogeneous boundary 
conditions must be satisfied as follows. A temporally stable steady-state linear 
oscillating continuous system constrained by n homogeneous boundary con- 
ditions will possess n bands of complex eigenvalues for waves of positive radiation 
condition and n bands of complex eigenvalues for waves of negative radiation 
condition. Further, for all waves with radiation conditions of like sign, n end 
conditions will be required. 

An application of this extrapolation to the problem considered by Burns (1967) 
(i.e. the above viscous solution but with the compressible liquid changed to 
a gas so that the temperature can become important, and where the waves are 
initiated by a flat axially oscillating piston which can be a t  a temperature dif- 
ferent from that of the tube wall) is mentioned by Scarton (1970). The procedure 
for computing the net profiles will be outlined in a later paper, which will contain 
a more amplified and complete development of the synthesis problem than was 
given by Scarton (1970). 

This work was done in the Department of Mechanical Engineering at  Carnegie- 
Mellon University in partial fulfilment of the requirements for the degree of 
Doctor of Philosophy by Henry A.Scarton. It was supported jointly by a 
National Science Foundation Traineeship and Ford Foundation grant to H. A. S., 
and National Science Foundation Grant GK-2542. The authors are grateful to 
Professor Sir James Lighthill, Dr H. K. Moffatt, Professor W. F. Hughes, Dr. S. 
Richardson and Professor H. F. Tiersten for their assistance and helpful com- 
ments. The calculations were performed on the Univac 1108 computer of 
Carnegie-Mellon University. L. Raab and D. Rao assisted in data handling. 

Note added in proof, The zero-frequency limit discussed at the end of $4 
results in some interesting conclusions regarding the form of q5 and (I. Sternberg 
(1960) (and also Gurtin 1972) discusses this limit in the use of Lam6 potentials 
in the Helmholtz decomposition for the solution of the equations of elasticity : 
the resultant static equilibrium displacement field is shown to be the sum of 
the tirne-dependent scalar and vector potentials, the time dependence of which 
cancels upon addition. 



620 H .  A .  Xcarton and W .  T .  Rouleau 

REFERENCES 

BROWN, F. 1'. 1962 Transient response of fluid lines. Trans. A.S.M.E., J .  Basic Enyng, 

BURNS, S .  H. 1966 Finite-amplitude travelling waves with boundary dissipation. Harvard 

BURNS, S. H. 1967 Finite-amplitude distortion in air a t  high acoustic pressures. J .  Acoust. 

COHEN, H. & Tu, Y .  1962 Viscosity and boundary effects in the dynamic behavior of 

ELCO, R. A. & HUGHES, W. F. 1962 Acoustic waveguide mode intorference and damping 

FITZ-GERALD, J. M. 1969 Blood flow in narrow capillaries. Ph.D. dissertation, Imperial 

FITZ-GERALD, J. M. 1972 Plasma motions in narrow capillary flow. J .  Fluid Mech. 51, 

GERLACH, C.  12. & PARKER, J. D. 1967 Wave propagation in viscous fluid lines including 

GURTIN, M. E. 1972 The linear theory of elasticity. Handbuch der Physik (ed. C .  

IBERALL, A. S. 1950 Attenuation of oscillatory pressures in instrument lines. Nat. Bur. 

KIRCHHOFF, G. 1868 Uber den Einfluss der Wkrmeleitung in einen Gase auf die Schall- 
bewegung. Am.  Phys. Chem. 134, 177-193. 

LIGHTHILL, M. J. 1956 Viscosity effects in sound waves of finito amplitude. In Surveys in 
Mechanics (ed. G. K. Batchelor & R. M. Davies), pp. 251-350. Cambridge University 
Press. 

D 84, 547-553. 

Univ. Acoust. Res. Lab. Tech. Memo. no. 60. 

SOC. Am. 41, 1157-1168. 

hydraulic systems. Trans. A.S.M.E., J .  Basic Engng, D 84, 593-601. 

with viscous fluids. 4th Int .  Congr. Acoustics, Copenhagen, pp. 21-28. 

College, London. 

463-476. 

higher mode effects. Trans. A.S.M.E., J .  Basic Enyng, D 89, 782-788. 

Truesdell), VIsI2, pp. 232-242. Springer. 

stds. J .  Reg. 45, 85-108. 

LIGHTHILL, M. J. 1965 Group velocity. J .  Inst. Maths. Applics. 1, 1-28. 
NEHARI, Z. 1965 Introduction to Complex Analysis. Allyn & Bacon. 
OLSON, R. M. 1962 Engineering Fluid Mechanics. International Textbook Co. 
ONOE, M., MCNIVEN, H. D. & MINDLIN, R. D. 1962 Dispersion of axially symmetric 

RAYLEIGH, LORD 1896 The Theory of Sound. Dover. 
REDWOOD, M. 1960 Mechanical Waveguides. Pergamon. 
ROBINSON, E. L. & SCARTON, H. A. 1972 CONTOR: a FORTRAN subroutine to  plot 

smooth contours of a single-valued arbitrary three-dimensional surface. J .  Comp. 

ROSENHEAD, L. 1954 The second coefficient of viscosity: a brief review of fundamentals. 

RUBINOW, S. I. & KELLER, J. B. 1971 Wave propagation in a fluid filled tube. J .  Acoust. 

SCARTON, H. A. 1970 Waves and stability in viscous and inviscid compressible liquids 
contained in rigid and elastic tubes by the method of eigenvalleys. Ph.D. dissertation, 
Carnegie-Mellon University, Pittsburgh. (Available from University Microfilms, Ann 
Arbor, Michigan 48106: order no. 70-18, 029E.) 

SCARTON, H. A. 1971 Double precision FORTRAN subroutines to compute both 
ordinary and modified Bessel functions of the first kind and of integer order 
with arbitrary complex argument: J,(z+jy) and I,(z+jy). J .  Comp. Phys. 8, 

waves in elastic rods. Trans. A.S.M.E., J .  Appl. Mech. E84, 729-734. 

Phys. 10, 242-251. 

Proc. Roy. SOC. A 226, 1-6. 

SOC. Am. 50, 198-223. 

' 

395-299. 
SCARTON, H. A. 1973 The method of eigenvalleys. J .  Comp. Phys. 11, 1-143. 
SOHLICHTING, H. 1960 Boundary Layer Theory. McGraw-Hill. 
SERCEEV, S .  I. 1966 Fluid oscillations in pipes at moderate Reynolds numbers. In Fluid 

Dylzamics, vol. 1, pp. 121-122. Paraday Press. 



Axisynzmetric waves in compressible Newtonian liquids 62 1 

SHIELDS, F. D., LEE, K. P. & WILEY, W. J. 1965 Numerical solution for sound velocity 

STERNBERG, E. 1960 On the integration of the equations of motion in the classical 

TIJDEMAN, H. 1969 Remarks on the frequency response of pneumatic lines. Trans. 

and absorption in cylindrical tubes. J .  Acoust. SOG. Am. 37, 726729. 

theory of elasticity. Arch. Rot. Mech. Anal. 6 ,  3650. 

A.S.M.E., J .  Basic Engng, D 91, 325-327. 


